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J. Phys. A: Math. Gen. 19 (1986) L307-L311. Printed in Great Britain 

LElTER TO THE EDITOR 

Orthogonal polynomial expansions for finite group 
transformations? 

Yorck Leschber, J P Draayer and G RosensteelS 
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 
70803-4001, USA 

Received 13 December 1985, in final form 21 January 1986 

Abstract. A simple tractable method for calculating finite group transformations is given. 
This is achieved by introducing orthogonal polynomial functions of the generating element 
of the transformation. The polynomials, which are finite in number because the Cayley- 
Hamilton theorem applies, depend only on the conjugacy class of the transformation. 
Orthogonality is defined with respect to the trace operation. Results for SU(2) and the 
defining representation of SU(3) are examined in some detail. 

The objective is to give a simple tractable method for calculating finite group transforma- 
tions 

T = exp(X) (1) 

where the generator X of the transformation is a Lie algebra representation matrix 
(Helgason 1978). Since the exponential is defined by an infinite power series, a direct 
calculation for T is impractical. One feasible technique is to put X in Jordan canonical 
form, X = C-' YC, thereby allowing T to be computed from 

(2) T = C-' exp( Y ) C  

For X diagonalisable, this method requires one to determine both the eigenvalues of 
X and its eigenvectors. 

In this letter, an alternative method is considered which expresses exp(X) as a 
polynomial in X of finite degree. The coefficients of the polynomial depend only upon 
the eigenvalues of X. 

Let M,, (C) denote the space of all ( n  x n )  matrices with complex entries. M,, (C) 
is an associative algebra of dimension n2 .  Fix X E  M,,(C) .  Let A(X) denote the 
subalgebra of M,,(C)  generated by the unit matrix Z and X; A(X) consists of the 
polynomials in X. However, by the Cayley-Hamilton theorem, X satisfies its own 
secular equation, a polynomial of degree n. Indeed, X satisfies its minimal polynomial 
which is of degree p d n. Thus, X p  (and X9,  q a p )  may be expressed as a linear 
combination of powers of X of degree less than p, X p  = Z , < p  a:Xr.  Therefore, the 
dimension of A ( X )  equals p, A(X) =span,{& X, X 2 , .  . . , XP- ' } .  In particular, exp(X) 
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may be expressed as a polynomial of finite degree (cf Rinehart 1955), 

p - 1  

k = O  
eXp(X ) = 1 bkXk. (3) 

Although one would like a simple explicit formula for the coefficients bk in this 
expansion, this is not possible for the monomial basis (3) .  In order to achieve an 
explicit result, it is necessary to transform to an orthonormal basis. Thus, consider 
the inner product 

(4) 

Note that IIX11* = K ( X ,  X) is the Hilbert-Schmidt norm. Moreover, when X and Y are 
elements of a classical Lie algebra, K ( X ,  Y )  is proportional to the Killing form. An 
orthonormal basis for A(X)  is given by the polynomials &(x) of degree k (cf Szego 
1939), 

1 
K ( X ,  Y )  = - Tr(X+ Y )  

n 
for X, YE M,( C). 

where MI is the Ith moment of X defined by 

1 
n 

MI = - Tr( X‘) (6) 

and Dk is given by the right-hand side of ( 5 )  with X’ replaced by Mk+’. It can be 
shown that 

K[pk(X), pl(x)I = 8kl O C k , l S p - l  (7)  

p k  (x) = 0 for k 5 P. (8) 

and 

For example, the latter follows directly from the minimal polynomial result because 
any column in the determinant ( 5 )  with k k p  can be reduced to a combination of 
those with k < p. Specifically, for the qth element of the kth column Xk+¶ = Xp+k-p-cq = 
z ~ < ~  a!Xr+k-p+q which shows that it is a linear combination of elements of the qth 
row of columns less than k. As a: is independent of q and the trace of the sum is the 
sum of the traces, one has the desired result. For a proof of the orthonormality (7), 
one can adapt, for example, the argument given by CramCr for ordinary polynomial 
functions (Cramer 1946). 

Now it follows immediately that if 
P - 1  

k-0  
exp(X) c CkPk(X) (9) 

then the coefficients are given explicitly by 

1 
n Ck = K [  pk(x ), eXp(x)] = - Tr[ pk(X )’ eXp(X)]. (10) 
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The coefficients c k  or bk only depend upon the conjugacy class of X.  This is a 
consequence of the natural algebra isomorphism 

A ( X )  -+ A( CXC-') 

P ( X ) +  P(cxc-') = C P ( X ) C '  

for any invertible matrix C and any polynomial P(X ) E A( X ). Therefore, if Y = CXC-' 
is a conjugate of X ,  

exp( Y )  = C exp(X)C-'  

k=O 

Since the coefficients are independent of the choice of class representative, we may 
exploit this freedom and compute the c k  for the simplest possible matrix Y = CXC-'. 
Clearly, if X is diagonalisable, it is most convenient to determine the c k  for Y a 
diagonal matrix. 

As an example, consider the exponentiation of the Pauli spin matrices. Let Y be 
a two-dimensional diagonal traceless matrix Y = diag(i0, 4 6 ) .  Then, the orthogonal 
polynomials are given by 

(13) 
1 

io  Po( Y )  = z P' ( Y ) = - Y 

and co = cos 8, c1 = i(sin e) .  Hence, exp( Y )  = cos @ I +  (sin e /  0) Y. From this it follows 
that for a general X = C-I YC, where C E SU(2), 

sin 0 exp( X) = cos e1 + -x e 

which is, of course, a well known result that can be obtained and written in a variety 
of ways (e.g. see Helgason 1978, p 149). 

An important special case of this method is the exponentiation of an irreducible 
representation n of a Lie algebra g to generate finite transformations of the correspond- 
ing Lie group G ,  

T =exp[.rr(X)]. (15 )  

Consider the adjoint action 

Y = Ad,( X ) = gXg-' forgEG. (16) 

Since r is a representation, 

The adjoint orbit representative Y may be selected to be in a simple form. For the 
classical groups, Y may be chosen from the Cartan subalgebra h (Burgoyne and 
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Cushman 1977): 

G = SU( m) 

G = Sp( m )  

h = {diag(iA,, . . . , iA,), Ai E R }  

h = {diag(iA,, . . . , iA,, -iA,, . . . , -iA,,,), A i  E R }  

G = O(2m h =  

\ 
O A , l ’ A i E R  

-A, 0 1  

Then, v(  Y )  for Y E  h is given by a sum over the weights of v. 
To illustrate this, consider a finite SU( 3 )  transformation (Akyeampong and Rashid 

1972 and references therein). A generic element X can be characterised by two numbers, 
a and p, multiplying the Cartan subalgebra operators Qo and Ao, 

Y=gXg-’=aQo+2/3Ao. (19) 

The eigenvalues of Qo and A. are given for the (A, p )  irreducible representation by 
the rule 

(Qo)= E = (2A + p )  - 3 ( p +  q ) =  -3( Y) 

A = ( p  + p  - 4)/2 = Z (20) 
(Ao) = MA = A - r = (Zz) 

where 0 S p S A, 0 S q d p, 0 S r S 2A (Hecht 1965). The ( E ,  MA) labels are those used 
in nuclear theory, while ( Y, I , )  denote the hypercharge and isospin projection operators 
of particle physics. 

According to the above, one can produce a result for exp(X) by considering exp( Y). 
Since the eigenvalues of Y are known, DE +2pMA, the Pk( Y )  can be generated and 
the constants ck determined. For example, for the three-dimensional defining space 
representation of S U ( 3 ) ,  (A, p )  = (l,O), one has 

exp(X ) = [2a (a + p)(3a + p )  exp( -a + p )  - 2a(  a - p ) ( 3 a  - p )  exp( -a - p )  
+ 2 a ( a + f ) ( a - p )  exp(2a)]Z/D 

+ [ ( 3 a + P ) ( a - P ) e x p ( - c ~ + p ) - ( 3 a  - p ) ( a + p ) e x p ( - a - p )  
+4ap exp(2a)]X/D 

+ [ - ( 3 a  + p )  exp(-a + p )  + ( 3 a  - p )  exp(-a - p ) + 2 p  e x p ( 2 a ) ] ~ ’ / ~  

(21) 
where D = 2a(3a - p ) ( 3 a  + p ) .  For the class of transformations with a = 0, which 
corresponds to rotations in a two-dimensional subspace of the three-dimensional space, 
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this reduces to 

X2 
(o=O) sin B’ cos p ‘ -  1 

(@=is’) B (” 
exp(X)- I + - X -  

which is also an SU(2) spin-1 result (e.g. see Helgason 1978, p 249). 

The authors wish to acknowledge that discussions with D Robson, Florida State 
University, on plaquette interactions in lattice gauge field calculations stimulated this 
work. 
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